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Eigenvalues of the anharmonic oscillator 
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Department of Physics, The Chinese University of Hong Kong, Shantin NT, Hong Kong 

Received 18 October 1977 

Abstract. A method of approximation for solving secular equations proposed by one of the 
authors is applied to the problem of finding the first few eigenvalues of the quantum 
mechanical anharmonic oscillator. Numerical results obtained compare favourably with 
those obtained by other methods. 

1. Introduction 

A method for finding the solutions of secular equations was proposed by one of the 
authors (Chan 1966, 1970). In this method, each eigenvalue satisfies an implicit 
equation, thus making it possible to find any one particular eigenvalue without finding 
the rest. We give a brief description. 

Consider the secular equation of a Hermitian matrix H: 

det (Hij  - Eaij) = 0. (1 1 
In what follows, the following notation will be used: 

(i,  j )  = Hij 

( i )=Hii-E.  

i # j  
and 

Define the cyclic product by 

(ijkl . . . s t )  = (i,  j ) ( j ,  k) (k ,  I )  . . . (s,t)(r, i )  (2) 
where all indices are different (alternatively one may consider the cyclic product to 
have the value zero if any two of the indices are equal). Furthermore, let 

1, (ijkl . . . s t )  (3) 
denote a summation of cyclic products over all possible non-equivalent cyclic permu- 
tations of the indices. It can then be shown that (Chan 1966) 

( i ) = H i i - E = N i / M i  
where 

(4) 
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Equations (4)-(6) define an implicit equation satisfied by the ith eigenvalue. 
Certain special applications of the implicit equation may be mentioned. If we have 

a secular equation of the Mathieu type obtained from a matrix H with elements given 
by 

then the right-hand side of equation (4) can be reduced to a continued fraction (Chan 
1966, 1970). This reduction facilitates considerably the solution of the equation. 

The secular equation for the anharmonic oscillator, however, does not satisfy 
condition (7). For this problem, direct application of equation (4) is made. 

(i, i) = Hij(&j + &j+h + &,j -h) ,  (7 ) 

2. The anharmonic oscillator 

The Hamiltonian for an anharmonic oscillator is 

(8) H- 2 2  p 2  2 p w  x +ax . 
2F 

ing matrix elements of H are obtained: 
Using the harmonic oscillator eigenfunctions as a basis for expansion, the follow- 

H"," = 3p(2n * + 2n + 1) + (2n + 1)t 

~ " , " - 2  = ~ " - 2 , "  = 2p(2n - l)[n(n - I ) ] "~  (9) 
Hn,"-4 = Hn-+ = p[n(n - l)(n - 2)(n - 3)]? 

All other matrix elements vanish and in (9) 

In order to compare results with other calculations, we introduce the notation of 

H= [ ( p ~ ~ h ~ / 1 6 p ) + ( a h ~ / 6 4 p ~ ) ~ / ~ ] ~ / ~ [ P ~  +(1 -a)X: + a 3 / 2 X t ] .  (11) 

Chan et a1 (1964) who used the following Hamiltonian: 

In equation (1 l), 

X, = (4pk ' /h2) ' /4~ 

P, = ( 4 / ~ h ~ k ' ) ' / ~ p  (12) 
(a2h2/F)1/3 

k' 
a =  

where 
k ' =  p ~ ~ + ( a ~ h * / p ) ~ / ~ .  

In accordance with their work, we set 

[ (pw2h2 /  1 6 ~ )  + (a h2/64p 2)2/3] '" = 1. 

In terms of p and r, this gives 
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Furthermore, from the definition of CY, we have 

CY 2/3  

l-CY 

Thus for a given anharmonicity a, equations (14) and (15) can be used to determine 
the corresponding values of the parameters p and t. 

We shall present calculations for a = 0.2. Such an anharmonicity is appropriate for 
triethylene oxide. The corresponding values for p and t are 

p =0.1117894 t = 1.7886318. (16) 

3. Procedure of calculation 

In equations (5) and (6), we note that the terms are grouped according to the number 
of products of one-cycles (i.e. cyclic products with only a single index). These one- 
cycles contain the eigenvalue E and the way they are grouped offer a convenient way 
of truncating the sums in (5) and (6). It is of course possible to truncate (5) and (6) in 
different manners. For example, one might truncate ( 5 )  by dropping terms which 
contain the product of more than three one-cycles while in (6), terms with products of 
four one-cycles may be kept. There is no hard and fast rule here but we believe that a 
reasonable approach would be to truncate both equations in the same way. We shall 
call the maximum number of factors in the products of one-cycles which are kept the 
order of the approximation. 

The calculation begins with choosing a suitable finite sub-matrix and determining 
the order of approximation desired. The sub-matrix should include the eigenvalue to 
be calculated. 

We now give an example of the calculation for the anharmonic oscillator with 
matrix elements defined by (9) and values of the parameters p and t given by (16). An 
8 X 8 sub-matrix is used and the calculation is for the second eigenvalue (i.e. the first 
excited state). Equation (4) with i = 1 then gives (to third order) 

-+--- (13) (15) 2(135)+2(1375)-(13)(75)-(15)(37) 

(17) 
(3) ( 5 )  (3)(5) (3)(5)(7) 

(35) (37) (57) 2(357) (1) = 
1 

(3x5) (3x7) (5)(7) (3)(5)(7) 

N I  
MI * 

-_ - 

The numerical values are 

7*49812+ 1.49963 60.35117 2266.8645 - - 
( 5  1 (3x5) (3)(5)(7) 

(3x5) (3)(7) (5)(7) (3)(5)(7) 

NI= 
(3 1 
80.97972 10,49738 354.81113 + 1098.3913 - - M 1 = l -  

(1) = 7.04274 -E1 

(3) = 20,90463 - E1 
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(5)=40.13241 -E1 

(7)= 60.72608-El. 

The eigenvalue El is then obtained by solving (17) numerically. 
The equation is first truncated to second order. Then using the first perturbation 

result as an initial approximation, one root of the second-order equation is found. This 
root in turn is used as the initial approximation in solving the third-order equation. 
The solution thus found is accepted as the best evaluation of the desired eigenvalue. In 
this and all subsequent calculations, the second- and third-order evaluations differ by 
less than five per cent. Also, the other roots of the second- and third-order equations 
are unrelated. This indicates that the procedure is quite reliable in locating the 
eigenvalue and that the method converges quite rapidly. 

4. Results and discussion 

The first five eigenvalues of the anharmonic oscillator were obtained by the method 
described in the previous section using a third-order approximation. Except for the 
fifth eigenvalue, the sub-matrices used were 8 X 8. For the fifth eigenvalue, a 9 x 9 
sub-matrix was used so that the term H44 - E would be centred in the sub-matrix. The 
results, together with those obtained by the other methods, are presented in table 1. 

Table 1. The first five eigenvalues of the anharmonic oscillator (a = 0.2) according to 
various approximations. 

Energy Variational First-order 
state methodt perturbation 

0 2.04810 2.124 
1 6.52795 7.043 
2 11.62670 13.300 
3 17.20250 20.900 
4 23.17400 29.850 

Second-order Exactt Our 
perturbation approximation 

1.977 2.04270 2.04261 
5.890 6.51051 6.511 11 
9.007 11,62920 11.65268 
9.901 17.2332 17,25803 
7.148 23.2391 23.41999 

t These results are taken from Chan et ai (1964). 

The perturbation results are rather poor. This is to be expected. The sheer size of 
the anharmonicity (a = 0.2) would make one suspect the accuracy of low-order 
perturbation results. 

Using a fairly small sub-matrix, we have obtained results comparable in accuracy 
to those obtained from variational calculations and numerical inversion of a 20 x 20 
sub-matrix. Our method thus offers a viable alternative. 
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